
Journal of Statistical Physics, Vol. 101, Nos. 1�2, 2000

Microscopic Chaos and Reaction-Diffusion Processes
in the Periodic Lorentz Gas1
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We apply the hypothesis of microscopic chaos to diffusion-controlled reaction
which we study in a reactive periodic Lorentz gas. The relaxation rate of the
reactive eigenmodes is obtained as eigenvalue of the Frobenius�Perron operator,
which determines the reaction rate. The cumulative functions of the eigenstates
of the Frobenius�Perron operator are shown to be generalizations of Lebesgue's
singular continuous functions. For small enough densities of catalysts, the reac-
tion is controlled by the diffusion. A random-walk model of this diffusion-con-
trolled reaction process is presented, which is used to study the dependence of
the reaction rate on the density of catalysts.

KEY WORDS: Dynamical chaos; reactive Lorentz gas; reaction rate;
isomerization; Frobenius�Perron operator; Poincare� �Birkhoff map; Pollicott�
Ruelle resonances; Lebesgue singular function; random-walk; diffusion-con-
trolled reaction; cross-diffusion.

1. INTRODUCTION

Reactive processes are of prime importance in many problems of current
preoccupation in chemistry and physics such as pattern formation in non-
equilibrium systems and in morphogenesis, (1) heterogeneous catalysis, (2)

recombination processes in solid or liquid phases, (3�5) as well as high-
energy reactions in astrophysical systems.(6) Yet, few studies have been
devoted to the microscopic understanding of reactive processes. In this con-
text, Nicolis and coworkers have carried out a study of an isomerization
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kinetics induced by color exchange between the freely moving particles of
an infinite one-dimensional ideal gas.(7�9) For this non-diffusive system, a
reaction-diffusion equation was rigorously derived for the color density by
Nicolis and coworkers.(8, 9) The diffusion-reaction equations for both the
total and the color densities were later derived in the case of a related hard-
rod gas model.(10) These one-dimensional systems have a surface dynamical
randomness characterized by an infinite Kolmogorov�Sinai entropy per
unit time which has its origin in the flux of particles continuously arriving
from infinity with random positions and velocities distributed according to
an equilibrium thermal distribution. However, in typical two- or three-
dimensional systems, the dominant source of dynamical randomness is the
local dynamical instability due to the defocusing character of the collisions
between the particles and the question arises whether such a bulk dynami-
cal randomness has a role to play in the justification of the macroscopic
laws of kinetics. Already, relationships have been established between
the transport coefficients and the characteristic quantities of chaos within
the escape-rate formalism.(11�13) On the other hand, for chaotic systems, the
hydrodynamic modes of diffusion have been explicitly constructed as
singular eigenstates of the Liouvillian formalism, which justifies the
exponential relaxation toward the thermodynamic equilibrium by chaotic
diffusion.

Inspired by the pioneering work of Nicolis and coworkers, a study of
isomerization kinetics in dynamical systems with a local dynamical
instability has been recently undertaken in order to understand how the
law of chemical kinetics can be derived from the microscopic chaotic
dynamics.(14�16) A previous work has been devoted to a reactive multibaker
model in which a colored particle undergoes a deterministic motion of dif-
fusion induced by a bakertype chaotic mapping in a chain of squares.(15, 16)

In this model, the color A or B changes when the particle passes by each
one of the catalysts, which are a few special squares periodically distributed
among the squares of the chain. For this model, the total density is
governed by a diffusion equation and the color density by a reaction-diffu-
sion equation if the spatial scales are large enough. The exponential relaxa-
tion toward equilibrium was characterized in terms of the Pollicott�Ruelle
resonances(17, 18) of the Frobenius�Perron operator of the model, giving a
full justification of the macroscopic laws of kinetics.

The purpose of the present paper is to extend the previous study to a
more realistic model which is a reactive Lorentz gas on a two-dimensional
periodic lattice. In this model, a colored particle moves in free flight
between elastic collisions on fixed hard disks forming a triangular lattice.
Its dynamics is known to be fully chaotic since the work by Bunimovich,
Chernov and Sinai who proved that diffusion is normal when the horizon
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is finite, i.e., when the disks are close enough to avoid infinite free flight
along special directions of the lattice.(19, 20) In the present paper, we con-
sider a reversible reactive process induced by the chaotic motion. Like in
the reactive multibaker mapping, the particle carries a color A or B which
changes instantaneously, and with a certain probability when the particle
collides with a ``catalyst'' which is one of a few special disks periodically
chosen among all the disks. The moving particle keeps its color upon colli-
sion on all the other disks. The kinetic scheme is thus

A+catalytic disk W B+catalytic disk, with probability p0

A+other disk W A+other disk (1)

B+other disk W B+other disk

Because of the probability of reaction, our model contains an extra source
of dynamical randomness than the chaotic dynamics. The reactive process
is deterministic only if the probability p0 is set equal to unity. This a priori
randomness of the reactive process is introduced to model the effect of a
complex color dynamics on a reactive time scale which is shorter than the
intercollisional time. We remark that one of the specificities of our model
is that the reaction is a reversible isomerization. This reactive process dif-
fers from the standard process of von Smoluchowski where the particle is
irreversibly absorbed by some reactive sinks.(3, 21, 22) Indeed, in the revers-
ible isomerization process, the total number of particles is constant and the
system is expected to reach an equilibrium where each color is equally dis-
tributed on the particles of the gas.

Our aim is to infer the macroscopic laws of chemical kinetics ruling
the approach to the thermodynamic equilibrium from the chaotic dynamics
of this model. For this purpose, we construct the Frobenius�Perron
operator of diffusion and reaction for the Poincare� �Birkhoff mapping of
the system. We show that the rates of exponential relaxation are given by
the Pollicott�Ruelle resonances of the Frobenius�Perron operator. We
identify the reaction rate among these resonances and we describe its
properties. One of our purposes is to understand the conditions under
which the reaction is controlled by the chaotic diffusion and to characterize
this regime in the special two-dimensional case. Another of our purposes is
the construction of the reactive eigenmodes which govern the exponential
relaxation of the color. Such eigenmodes have already been constructed for
the chaotic diffusion in the multibaker map and in the Lorentz gas, where
they are given by singular distributions devoided of a density func-
tion.(14, 24, 25) In the reactive Lorentz gas, we obtain a similar result for the
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reactive eigenmodes in spite of the fact that the reactive process is a priori
random by the introduction of the probability p0 . Such an assumed ran-
domness is often believed to smoothen sufficiently the eigenmodes to
guarantee the existence of their density function. Here, we show that such
a smoothing does not occur because the randomness is only assumed at
some internal boundaries of the system and because the dynamics remains
deterministic and chaotic between these boundaries.

Finally, we would like to show that the dynamics of the whole gas
containing infinitely many particles is essentially ruled by the chaotic one-
particle dynamics in systems such as the one we describe here. In these
chaotic one-particle systems, the macroscopic reaction-diffusion equations
ruling the relaxation toward the thermodynamic equilibrium can be
justified in both the diffusive and reactive sectors of the dynamics.

The plan of the paper is as follows. Section 2 contains a detailed
description of the model used. The Frobenius�Perron operator which rules
the time evolution of the probability distribution in phase space is derived
in Section 3. Its reactive eigenmodes are constructed in Section 4. The
large-scale properties of reaction are studied in Section 5 with a random-
walk model of the diffusion-reaction process. Conclusions and perspectives
are drawn in Section 6.

2. DESCRIPTION OF THE MODEL

In the reactive periodic Lorentz gas, a point particle, carrying a color
A or B, undergoes elastic collisions on disks fixed in the plane and forming
a regular triangular lattice, characterized by the fundamental lattice vectors
e1=d(1, 0) and e2=d( 1

2 , - 3�2). The radius of the disks is assumed equal
to unity and d is the distance between the centers of the disks. We shall
work in the finite horizon regime, 2<d<4�- 3, for which the diffusion
coefficient is finite.(19, 20) Some of the disks are catalysts: if the point particle
collides on one of them, it changes instantaneously its color with a prob-
ability p0 . The catalysts form a regular triangular superlattice over the disk
lattice. The fundamental vectors characterizing this superlattice are E1=
nd(0, &- 3) and E2=nd( 3

2 , - 3�2), where n is an integer parameter which
controls the density of catalysts in the system: in the directions of E1 and
E2 , one disk over n is a catalyst. The configurations with n=1 and n=2
are depicted in Fig. 1. For n=1, the fundamental cell of the superlattice
contains 3 disks among which one is a catalyst and it can be chosen as
shown in Fig. 1a. The shape of the fundamental cell for n=1 is used as the
building block for the fundamental cell for larger n, as shown in Fig. 1b for
the case n=2. Therefore, for larger n, the fundamental cell of the superlattice
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Fig. 1. (a) Elementary cell of the superlattice of the catalysts, in the case n=1; (b) in the
case n=2.

is made of n_n of these blocks of 3 disks. Accordingly, one disk over
N=3n2 is a catalyst. This geometry has been chosen in order to study dif-
ferent densities of catalysts by the same numerical algorithm, which
depends on the parameter n. The isomerization is assumed to be isothermal
in the sense that the reaction is independent of the energy of the particle.
For this reason, the color dynamics is passively driven by the motion of the
point particle which, itself, is not affected by the isomerization.

The phase-space coordinates of the point particle are its positions, its
velocities and its color (x, y, vx , vy , c). The color is labeled by a discrete
variable c which takes the values +1 or &1 whenever the color is A or B.
Since the collisions are elastic, the energy is conserved and the magnitude
of the velocity is a constant of motion. We shall restrict ourselves, without
loss of generality, to &v&=1. This energy shell defines a three-dimensional
phase space having the coordinates (x, y, ., c), where . is the angle
between the velocity and the x-axis.

By the spatial periodicity of the system studied, the dynamics can be
reduced to the dynamics inside an elementary cell of the superlattice of
catalysts, which contains N=3n2 disks. Moreover, the three-dimensional
flow dynamics can be further reduced to a Poincare� �Birkhoff map describ-
ing the dynamics from collision to collision. The Birkhoff coordinates are
x=( j, %, |) with 1� j�N=3n2, 0�%<2? and &1�|�1. j defines the
disk of the elementary cell on which the collision takes place, % is an angle
giving the position of the impact on this disk and | is the sine of the angle
between the velocity after collision and the normal at the impact.(14, 16, 24)
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In these Birkhoff coordinates, the mapping is known to be area-preserving.
The mapping of the reactive Lorentz gas is thus given by:

xn+1=.(xn)

tn+1=tn+T (xn)
(2)

ln+1=ln+a(xn)

cn+1==(xn) cn

tn is the time of the n th collision. T (x) is the first-return time function. The
vector ln gives the cell of the superlattice visited at time tn and a(xn) is a
vector giving the jump carried out on the superlattice during the free flight
from xn to xn+1 . The change of color is controlled by the function:

=(xn)={&1
+1

if jn is a catalyst, with a probability p0

otherwise
(3)

3. THE FROBENIUS�PERRON OPERATOR: FROM THE FLOW
TO THE POINCARE� �BIRKHOFF MAP

The current state and position of the particle are given by a suspended
flow in terms of the coordinates (x, {, l, c), where 0�{<T (x) is the time
elapsed since the last collision, l is a vector of the superlattice and c=\1.
The flow is given by

8t(x, {, l, c)=(x, {+t, l, c), for 0�{+t<T (x) (4)

8t(x, {, l, c)=[.mx, {+t&T (x)& } } } &T (.m&1x),

l+a(x)+ } } } +a(.m&1x), =(x) =(.x) } } } =(.m&1x) c],

for 0�{+t&T (x)& } } } &T (.m&1x)<T (.mx) (5)

The phase-space probability density q(x, {, l, c) evolves in time under a
Frobenius�Perron operator P� t:

(P� tq)(x, {, l, c)=q[8&t(x, {, l, c)] (6)

The dynamics of this infinite system can be described by a density defined
in an elementary cell of the superlattice and by a Frobenius�Perron
operator acting on this density. A detailed derivation of this operator for
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the diffusive case is given elsewhere.(14, 24) Only the main steps of the
calculation are presented here in the case of our model.

We define a projection operator

E� k= :
l # L

exp(&ik } l) S� l (7)

where L is the superlattice vectors set and

S� l f (x, l$)= f (x, l$+l), with l, l$ # L (8)

Applying E� k to the density q(x, {, l, c) gives

E� k q(x, {, l, c)=exp(ik } l) E� kq(x, {, 0, c)

=exp(ik } l) qk(x, {, c) (9)

The evolution in time of the density turns out to be decoupled into the dif-
ferent Fourier components qk , which are governed by evolution operators
defined as

Q� t
k(x, {, c)#E� kP� tq(x, {, 0, c)

=exp[ik } l[8&t(x, {, 0, c)]] qk[,&t(x, {, c)] (10)

where ,t is the flow in the fundamental cell of the lattice.
In order to reduce the flow dynamics to the mapping from collision to

collision, a Laplace transform of Q� t
kqk(x, {, c) is performed:

|
�

0
dt exp(&st) Q� t

k qk(x, {, c)

=exp(&s{) _|
{

0
d{$ exp(s{$) qk(x, {$, c)+ :

�

n=1

R� n
k, s q~ k, s(x, c)& (11)

where q~ k, s is a function defined by

q~ k, s(x, c)=|
T (x)

0
d{$ exp(s{$) qk(x, {$, c) (12)

R� k, s is the Frobenius�Perron operator of the mapping . describing the
evolution from collision to collision, and multiplied by an important factor
which takes into account the varying time of flight between the collisions,
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the spatial modulation by the wavenumber k, as well as the color change
on a part of the domain of definition of the Poincare� �Birkhoff mapping:

R� k, sq~ k, s(x, c)=exp[&sT (.&1x)&ik } a(.&1x)]

_[[1& p(.&1x)] q~ k, s(.&1x, c)+ p(.&1x) q~ k, s(.&1x, &c)]
(13)

where

p(x=[ j, %, |])={p0

0
if j is a catalyst
otherwise

(14)

We define the total phase-space density f (x) and the difference g(x) of
phase-space densities as

f (x)=q~ (x, A)+q~ (x, B) (15)

g(x)=q~ (x, A)&q~ (x, B) (16)

The density f (x) does not distinguish the colors and evolves as in the non-
reactive Lorentz gas.(14, 24) The difference g(x) of color densities is expected
to relax to zero, describing the relaxation toward equilibrium. The time
evolutions of these two quantities are decoupled and governed by the
following operators:

V� k, s f (x)=exp[&sT (.&1x)&ik } a(.&1x)] f (.&1x) (17)

and

W� k, s g(x)=[1&2p(.&1x)] exp[&sT (.&1x)&ik } a(.&1x)] g(.&1x)

(18)

The operator V� k, s controls the diffusive motion of the total density f (x)
and has been studied elsewhere.(14, 24) The operator W� k, s governs the evolu-
tion of the difference of densities between both colors g(x) and is thus
associated with the reaction. These operators are composed of the
Frobenius�Perron operator of the Poincare� �Birkhoff mapping and of an
operator of multiplication by a complex function of the coordinates.

The relaxation toward equilibrium can be studied by the spectral
analysis of these operators. In particular, an exponential decay at the rate
&s can be identified by considering the eigenvalue problems based on these
operators. Assuming an eigenvalue equal to unity for these operators has
the effect of fixing the decay rate &s to be a function of the wavenumber k.
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The so-obtained decay rate &sk is a so-called Pollicott�Ruelle resonance(17, 18)

and it would correspond to a sort of eigenvalue for the Liouvillian operator
of the system.(14) Since this rate is a function of the wavenumber it gives a
dispersion relation for the process. We notice that the operator (17)
reduces to the Frobenius�Perron operator for the Poincare� �Birkhoff map
of the billiard composed of a single cell of the periodic Lorentz gas if the
wavenumber vanishes. We know that this billiard is ergodic and possesses
a unique invariant measure which has a uniform density, (19, 20) so that we
may conclude that the resolution of the eigenvalue problem for the
operator (17) would give s0=0 for the leading solution s. If the wavenum-
ber is now increased from zero, a branch of solutions sk is obtained which
starts from s0=0. This branch defines the dispersion relation of diffusion
and the corresponding eigenmode defines the hydrodynamic mode of diffu-
sion in the Lorentz gas, as studied elsewhere.(14, 24)

4. REACTIVE EIGENMODES OF THE REACTIVE PERIODIC
LORENTZ GAS

4.1. Relaxation Rates

The reaction can be studied in a similar way as the diffusion by iden-
tifying the eigenmode of the operator (18) which controls the slowest
relaxation of the color. Accordingly, we consider the Pollicott�Ruelle
resonances of the reactive operator (18) since these resonances provide the
relaxation rates of the reactive eigenmodes. To obtain these resonances, we
consider the generalized eigenvalue problem for W� k, sk

, and its adjoint
W� -

k, sk
with 1 as eigenvalue(14, 24)

W� k, sk
�k(x)=�k(x) (19)

W� -
k, sk

�� k(x)=�� k(x) (20)

assuming the normalization condition

(�� k�k)=1 (21)

A formal solution for �k (respectively �� k) can be obtained by applying suc-
cessively W� k, s (respectively W� -

k, s) to the unit function:

�k(x)= lim
n � �

`
n

m=1

[1&2p(.&mx)] exp[&skT (.&mx)&ik } a(.&mx)] (22)

�� k(x)= lim
n � �

`
n&1

m=0

[1&2p(.mx)] exp[&skT (.mx)&ik } a(.mx)] (23)
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The normalization condition gives an equation to obtain sk :

1= lim
n � � � `

n&1

m=&n

[1&2p(.mx)] exp[&skT (.mx)&ik } a(.mx)]� (24)

We are interested in the smallest relaxation rate &sk which dominates at
long times t. For the reactive case, the dispersion relation is given by

sk=&2}&D(r)k2+O(k4) (25)

where } is the reaction rate which is thus given by

}=&1
2s0 (26)

This method can be efficiently applied to the numerical computation of the
reaction rate. An example of dispersion relation for the reaction is depicted
in Fig. 2 where we see that the quadratic approximation holds up to the
wavenumber (kx=0.08, ky=0) in this case where d=2.1, n=2, and
p0=0.1. In this example, the reaction rate takes the value }=0.0095, while
the reactive diffusion coefficient has the value D(r)=0.091\0.007 which is
very close to the value of the diffusion coefficient D=0.0995\0.0003.(23)

Fig. 2. Dispersion relation in the reactive case, as function of kx , ky=0, for d=2.1, n=2,
p0=0.1; 2}=0.01875 and D(r)=0.091. The imaginary part Im(s) is equal to zero within the
numerical error.
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4.2. Cumulative Functions of the Reactive Eigenmodes

The cumulative function of the reactive eigenmode is obtained by
integration of (22) over % and |. For a vanishing wavenumber k=0, we
get

F0( j, %, |)=
1

4? |
%

0
d%$ |

|

&1
d|$ lim

n � �

_ `
n

m=1

[1&2p(.&mx$)] exp[+2}T (.&mx$)] (27)

For the reactive Lorentz gas with n=2 and d=2.1, this cumulative func-
tion is depicted in Fig. 3a on the phase-space region of the catalyst and in
Fig. 3b on the region of the nearest-neighboring disk at the right-hand side
of the catalyst.

The contribution of an initial condition (%, |) to the integral (27)
depends on the number n$ of collisions on a catalyst during the trajectory.
The larger n$ is, the smaller the contribution of the trajectory from the
initial condition (%, |). The global slope of F0( j, %, |) is thus smaller for
values of (%, |) giving trajectories with many collisions on catalysts. This
effect becomes more and more pronounced as p0 increases. This can be
seen in Figs. 3a and 3b. Figure 3a depicts the cumulative function around

Fig. 3. (a) Cumulative function of the eigenstates around the catalyst at vanishing
wavenumber k=0, for d=2.1, n=2, p0=0.4; |=&0.75, &0.5, &0.25, 0, 0.25, 0.5, 0.75, 1;
(b) Cumulative function of the eigenstates around a disk first neighbor of the catalyst at
vanishing wavenumber k=0, for d=2.1, n=2, p0=0.2 for the dashed line, p0=0.4 for the
solid line, |=&0.75, &0.5, &0.25, 0, 0.25, 0.5, 0.75, 1. In both figures, the functions are given
up to a multiplicative constant.
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a catalytic disk. The sixfold structure is due to the six openings toward the
next-nearest-neighboring disks. However, Fig. 3b depicts the cumulative
function on a disk which is on the right-hand side of the catalytic disk so
that reaction occurs for the angle % around the value ? and, indeed, the
slope of the cumulative function is smaller in this region than for other
angles where the nearest-neighboring disk is not catalytic.

The cumulative functions of the eigenstates are continuous but are not
differentiable like Lebesgue's singular functions.(26, 27) One of such singular
functions is plotted in the book by Billingsley in the one-dimensional
case.(26) Here, we have a function defined in the two-dimensional phase
space of Birkhoff coordinates. At each point, one direction is unstable and
another is stable although these directions do not vary continuously as it
is known for the map of the Lorentz-gas billiard.(19, 20) Because the unstable
direction is expanding, the density is smooth in this direction so that the
singular character is only expected in the stable direction.(24, 25) Since the
cumulative function (27) involves the inverse of the mapping .&1, an
expanding dynamics is expected to occur in the stable direction along
which the cumulative function (27) is singular.

In order to understand better what happens in the stable direction, we
consider an analogy with an expanding one-dimensional r-adic map:(26, 27)

xn+1=rxn , (modulo 1) (28)

Each initial condition of a trajectory of the map (28) corresponds to a sym-
bolic sequence [|n]�

n=0 according to

x= :
�

n=1

|n&1

rn (29)

with |n=0, 1, 2,..., r&1. Each symbolic sequence of n symbols corresponds
to an interval of length 1�rn on the unit interval where the one-dimensional
map (28) is defined. For such a map, the first-return time is T=1 so that
the density of the reactive eigenmode (22) with k=0 has the form

�(x)= lim
n � �

u|0
u|1

u|2
} } } u|n&1

exp(&sn) (30)

where u|=1 if the subinterval | is non-reactive and u|=1&2p0 if it is
reactive, for instance. Requiring that the density (30) is normalized by
�1

0 �(x) dx=1 leads to the value of the decay rate s=ln(�| u| �r). If we
introduce v|=u| exp(&s)=ru|��|u| , which satisfy �|v|=r, the den-
sity (30) can be rewritten as

�(x)= lim
n � �

v|0
v|1

v|2
} } } v|n&1

= lim
n � � \ `

r&1

|=0

v f|(x, n)
| +

n

(31)
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where f|(x, n) is the frequency of occurrence of the symbol | among the
n first symbols of the r-adic expansion (29) of x. All the frequencies add
up to unity: �| f|(x, n)=1. It is known that the invariant measure of the
r-adic map (28) has a uniform density so that these frequencies are all
equal to 1�r for almost all the initial conditions x of the unit interval. For
this reason, the cumulative function

F(x)=|
x

0
�(x$) dx$ (32)

is a Lebesgue singular functions unless u|=1 for all |=0, 1, 2,..., r&1, in
which case F(x)=x. The cumulative function for the r-adic map is the
solution of the deRham-type iteration(27, 28)

F (x)=exp(&s)_

u0

r
F (rx), 0<x<

1
r

(33)

u1

r
F (rx&1)+

u0

r
F (1),

1
r
<x<

2
r

u2

r
F (rx&2)+

u0+u1

r
F (1),

2
r
<x<

3
r

b
ur&1

r
F (rx&r+1)+

u0+u1+ } } } +ur&2

r
F (1),

r&1
r

<x<1

Figure 4 shows two examples of this cumulative function in the triadic
case r=3, u0=u2=1 and u1=1&2p0 for p0=0.2 and p0=0.4. The eigen-
value is here exp(s)=1&2p0 �3. We observe that the singular character
increases with p0 although the function can be innocent looking for small
values of p0 . We also observe that the slope of the cumulative function
decreases in a reactive region as p0 increases in the same way as in Fig. 3b
for the reactive Lorentz gas.

In general, the cumulative function (32) is continuous and increasing
but its derivative is zero almost everywhere, i.e., where �(x)=0. Further-
more, its derivative is infinite on a dense set of points where �(x)=+�.
To show these properties and the analogy with the general cumulative
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Fig. 4. (a) Cumulative function of the eigenstates of the reactive r-adic map (28) for r=3,
u0=1, u1=1&2p0 , u2=1 with: (a) p0=0.2; (b) p0=0.4. The cumulative function is here
numerically calculated by iterating the deRham-type system (33).

function (27), let us consider the dyadic case with r=2. In this dyadic case,
we find that

{�(x)=0,
�(x)=+�,

if v f0(x, n)
0 v f1(x, n)

1 <1
if v f0(x, n)

0 v f1(x, n)
1 >1

(34)

for n � �, where v0+v1=2 and f0+ f1=1. Moreover, we know that
f0= f1=1�2 for the binary expansion, of almost all the points x of the unit
interval, so that the density takes the value �(x)=limn � �(v0v1)n�2 for
almost all the points x. Since v0+v1=2, we get that

v0v1=1&(v0&1)2<1 (35)

unless v0=v1=1. Therefore, �(x)=0 for almost all the points x, which
means that its cumulative function F(x) has a zero derivative almost
everywhere. However, the derivative of F(x) is infinite where �(x) is
infinite, which occurs if

f0(x, n)> fc=
ln(1�v1)
ln(v0 �v1)

>
1
2

(36)

for n � �. Because the critical frequency fc is larger than 1�2 if v0{1, we
infer that �(x) is infinite only on a set of zero Lebesgue measure but this
set is dense in the unit interval. For instance, the points x such that f0=1
and f1=0 are dense. Indeed, this set contains the points x with a binary
expansion like |0|2|2 } } } |n&100000000 } } } with n arbitrarily large. These
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points delimit the intervals of length 2x=1�2n obtained by dividing the
unit interval successively n times into two equal pieces. For n � �, these
points are dense in the unit interval so that we may conclude that
�(x)=+� on a set which is dense in 0�x�1.

The cumulative function (27) of the reactive Lorentz gas differs from
the one of piecewise-linear maps in several respects. Firstly, the mapping .
of the disk billiard is nonlinear and the stable direction changes from point
to point. Therefore, the singular character is here expected to occur along
the changing stable direction.(14, 24) Secondly, the first-return time function
is not constant in a billiard but we should notice here the decay rate &s
appearing in the cumulative function (27) is fixed by the normalization
condition (24) so that the cumulative function (27) exists only for that
value of the decay rate &s. Despite these differences, the same behavior
happens for the density of the cumulative function (27) as for the Lebesgue
singular function. Indeed, this density can be rewritten as

�0(x)= lim
n � �

[(1&2p0) fcatalyst(x, n)e+2}T(x, n)]n (37)

where fcatalyst(x, n) is the frequency of collision on a catalyst and T(x, n)
is the mean intercollisional time, during the n first collisions of the trajec-
tory from the initial condition x=( j, %, |). We notice that this density is
non-negative for a reaction probability 0�p0<1�2. If x is the initial condi-
tion of a trajectory without collision on any catalyst after the Nth colli-
sion, all the factors corresponding to the further collisions are larger than
one so that �0(x)=+� for such trajectories. These trajectories are dense
because they can be as close as possible to an arbitrary trajectory for a
large enough value of N since the system is dynamically unstable and
ergodic. On the other hand, the density vanishes for almost all the other
trajectories if the reaction probability p0 is positive and small enough. We
may therefore conclude that the cumulative function (27) of the reactive
eigenmode of the reactive Lorentz gas is a kind of two-dimensional
generalization of Lebesgue's singular functions.

5. THE REACTION RATE

5.1. The Macroscopic Reaction-Diffusion Equations

In order to derive an equation for the macroscopic difference of color
densities

_(l, t)=\A(l, t)&\B(l, t) (38)
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we go back to the eigenvalue problem for the flow. It is given by

Q� t
k9k(x, {)=exp(sk t) 9k(x, {) (39)

where 9k(x, {) is related to the eigenstate of the mapping �k(x) by(14, 24)

9k(x, {)=exp(&sk{) �k(x) (40)

Equation (39) can be rewritten as

E� kP� t9(x, {, 0)=exp(sk t) 9k(x, {) (41)

and can be generalized to any vector l # L by

E� kP� t9(x, {, l)=exp(ik } l) exp(sk t) 9k(x, {) (42)

The macroscopic difference of concentrations is obtained by integration of
(42) over x=( j, %, |) and over {:

_(l, t)=exp(ik } l) exp(sk t)
1

3n2 :
3n2

j=1

1
4? |

2?

0
d% |

1

&1
d|

1
(T)

_|
T (x)

0
d{ 9k[x=( j, %, |), {] (43)

where (T) is the mean value of T (x). The temporal evolution of _(l, t) at
long time t will be dominated by the leading dispersion relation sk given by
(25). On large spatial scales, the behavior is ruled by the dispersion relation
expanded up to the terms which are quadratic in the wavenumber. Under
these circumstances, we may infer that the difference _ of color densities
satisfies the equation

�_
�t

&D(r) �2_
�l2 &2}_ (44)

approximated to the second-order spatial derivatives. The study of the dif-
fusive case made in refs. 14 and 24, leads to the following macroscopic
equation for the total concentration \(l, t)=\A(l, t)+\B(l, t)

�\
�t

&D
�2\
�l2 (45)
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The combination of Eqs. (44) and (45) corresponds to the macroscopic
reaction-diffusion system

�\A

�t
&

D+D(r)

2
�2\A

�l2 +
D&D(r)

2
�2\B

�l2 &}(\A&\B) (46)

�\B

�t
&

D&D (r)

2
�2\A

�l2 +
D+D(r)

2
�2\B

�l2 +}(\A&\B) (47)

We find cross-diffusion terms between both chemical species, which are
similar to the ones obtained in the reactive multibaker map.(15) These
cross-diffusive terms have their origin in the fact that the equations
(46)�(47) hold on spatial scales which are larger than the distance L
between the catalysts: &l&>>L. On spatial scales which are smaller than
the distance between the catalysts but larger than the lattice interdisk dis-
tance, we should expect a pure diffusive motion of each species A and B
without cross-diffusion.(16) Indeed, the motion between the catalysts is dif-
fusive and the species does not change as long as a catalyst is not met.
However, on spatial scales larger than the intercatalyst distance, the chemi-
cal species mix so that this cross-diffusion appears. Nevertheless, this cross-
diffusion is not expected to be important, for instance, in the case of Fig. 2
where d=2.1, n=2, and p0=0.1. In this case, the diffusion coefficient takes
the value D=0.0995\0.0003, (23) although the reactive diffusion coefficient
is D(r)=0.091\0.007. Whereupon the diffusion coefficients are DAA=
DBB=(D+D(r))�2=0.095\0.004 while the cross-diffusion coefficients are
DAB=DAB=(D&D(r))�2=0.004\0.004, which is thus a small if not
vanishing effect.

5.2. Dependence of the Reaction Rate on the
Interdisk Distance

We have calculated numerically the reaction rate by using the nor-
malization condition (24), which allows us to determine the relaxation rate
&s as a function of the wavenumber k. The reaction rate is obtained at
zero wavenumber by Eq. (26). The dependence of } on the interdisk dis-
tance d has been obtained for three different densities of catalysts, for n=1,
2 and 3 (see Figs. 5a�c). These configurations correspond respectively to
one catalyst over 3, 12 and 27 disks.

The reaction rate } of the first configuration with n=1 is shown in
Fig. 5a where we observe that } decreases as d increases. The values
obtained are well fitted by a simple formula: } is equal to the product of
the probability of reaction p0 with the collision rate and with the fraction
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Fig. 5. Reaction rate as a function of d ; the diamonds are the resonances of the
Frobenius�Perron operator and the circles are the eigenvalues of the transition matrix W� :
(a) for n=1, p0=0.1 where the dashed line represents the formula (48); (b) for n=2, p0=0.1;
(c) for n=3, p0=0.1.

of collisions on a catalyst. Since there are three disks in each reactive trap,
one of which being the catalyst, the fraction of collisions on the catalyst is
1�3 so that

}=
p0

3Tcol

(48)

where

Tcol=
- 3

4
d 2&

?
2

(49)
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is the average time between collisions in a trap formed by the region
delimited by three nearest-neighboring disks.(29) The reason at the origin of
the behavior (48) is that all the traps are reactive in this configuration of
the catalysts where n=1. Therefore, the reaction is determined simply by
the average time between the collisions on the disks and not by the time
to jump from one trap to the next.

The reaction rate } of the other configurations with n�2 is shown in
Fig. 5b and 5c. In these configurations, the density of catalysts is lower and
the behavior of } as a function of the interdisk distance d changes com-
pletely. Now, } vanishes if d=2, i.e., if the disks are in contact; } increases
with d, reaches a maximum and then slowly decreases. Here, the particle
has to diffuse from trap to trap in order to reach a catalyst before reacting:
the reaction is thus controlled by the diffusion for n�2. This diffusion-
reaction process can be modeled by a random-walk approximation similar
to the model of Machta and Zwanzig for diffusion.(29) The exact motion of
the particle among the disks is replaced by a random walk on the lattice
of the traps (see Fig. 6). A trap is reactive if one of the three disks surroun-
ding it is a catalyst. Otherwise, it is non-reactive. This model is assumed to
be a Markov process. This will be the case for d near to 2, when the par-
ticle undergoes many collisions before leaving a trap. The traps form a
regular hexagonal lattice and the reactive traps form a regular hexagonal
superlattice over it. By periodicity, we can thus restrict ourselves to an
elementary cell.

fi: is defined as the probability to find the particle in the trap i in the
state :. f i: is supposed to obey the following master equation:

d
dt

fi:=:
j;

Wi: j; fj; (50)

where Wi: j; is the probability to go from i: to j; per unit time. The conser-
vation of probability implies that

Wi:i:=& :
i:{ j;

W i: j; (51)

If a particle is in the trap i, it can only stay in it or go to one of the three
neighboring traps. Moreover, reaction will be assumed to occur only for a
particle being in a reactive trap, without leaving it. Each row i of the
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matrix W will have 4 non-zero elements, if i labels a non-reactive trap and
5 otherwise. These non-zero elements can be of 4 different types:

1. Transition from a trap to one of its neighbors: The average
residence time in a trap is given by Tres=(?�6(d&2))((- 3�2) d 2&?).(29)

If we suppose that the three neighbors of a trap are equiprobable, the
transition rate is given by 1�3Tres .

2. Reaction in a reactive trap: The reaction rate is supposed equal to
p0 �3Tcol .

3. Diagonal element for a reactive trap: According to (51), the
diagonal element is equal to &( p0�3Tcol)&(1�Tres).

4. Diagonal element for a non-reactive trap: By the same argument,
we have here &1�Tres .

As a consequence of Eq. (50), the difference of probabilities between
both colors gi= fiA& fiB obeys the equation

d
dt

( fiA& fiB)=:
j#

(WiAj#&WiBj#) fj#

=:
j

[(WiAjA&WiBjA) f jA+(WiAjB&WiBjB) fjB] (52)

We notice that the matrix W has the symmetries

WiAjA=WiBjB (53)

WiBjA=WiAjB (54)

so that Eq. (52) becomes

d
dt

( f iA& fiB)=:
j

(WiAjA&WiBjA)( f jA& fjB) or (55)

d
dt

gi=:
j

W� ij gi (56)

An eigenvalue *(#) of the matrix W� contributes to the decay of the observ-
able color

C(t)=:
i

gi (t) (57)
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only if the autocorrelation function of C(t) is a non-zero function. Since

(C(0) C(t)) =:
i

g (#)
i (0) :

j

g (#)
j (t)

=:
i

g (#)
i (0) :

j

exp(*(#)t) g (#)
j (0)

=exp(*(#)t) \:
i

g (#)
i +

2

(58)

we obtain the condition that � i g (#)
i must be a non-vanishing quantity. The

first eigenvalue satisfying this condition gives the value of the reaction rate
as }=&*(#)�2. These eigenvalues have been compared with the reaction
rates obtained from the reactive evolution operator (18), and with the
results of a continuous-time simulation, for n=1, 2 and 3. For n=1, the
agreement is good for the whole range of d (see Fig. 5a). The diffusion does
not play any role since all traps are reactive. For n=2 and 3, the agree-
ment is good only for the small values of d&2, up to 0.08 (see Fig. 5b�c).
This is the range of validity of the random-walk approximation. For larger
values of d, we already know that the random-walk model by Machta and
Zwanzig does not predict accurate values for the diffusion coefficient since
the simple Markov approximation assumed in this model starts to be
defective because the flow of particles from one trap to the next traps is
more important so that the quasi-equilibrium assumed in each trap is no
longer valid.(30) We should therefore expect that the same defect appears
here for the reaction rate. A better model for the reaction rate could be
obtained with an improved model for the diffusion.

5.3. Dependence of the Reaction Rate on the
Intercatalyst Distance

The previous random-walk model has also been used to calculate the
reaction rate for more dilute systems with n=5 to 10 for which there is one
catalyst over N=75, 108, 147, 192, 243, and 300 disks, respectively. In this
dilute regime, the reaction is controlled by the diffusion of the particle
between the catalysts so that, in two dimensions, the dependence of } on
N is expected to be

}&C
D

d 2N ln N
(59)

where D is the diffusion coefficient, d is the interdisk distance, and C is a
dimensionless constant. This result is obtained by a calculation based on

181Microscopic Chaos and Reaction-Diffusion Processes



Smoluchowski's model.(22) An equation of diffusion is considered for the
densities \A and \B and for their difference _=\A&\B

�t _=D {2_ (60)

where {=�r=� l . We notice that this equation only holds for distances
which are larger than the interdisk distance but smaller than the interca-
talyst distance. In this respect, the cross-diffusive and the reactive terms of
Eqs. (46)�(47) do not arise on these intermediate spatial scales.

The diffusion equation (60) must be solved with boundary conditions
which suppose that the particles move diffusively toward each catalyst. At
the catalyst, we may consider the general radiative boundary condition(3, 22)

�r_ | r=d�2=:_ | r=d�2 (61)

where the constant : is fixed by the geometry of the catalyst and by the
reaction probability p0 . In the present case, since the catalyst does not
perturb the geometry of the lattice on which diffusion occurs, we find that
gi=0 on the six traps around a catalyst so that :=�. However, we shall
see that the final result does not depend on the constant : as far as the
leading asymptotic behavior is concerned.

The boundary condition at large distances is chosen as follows. Each
catalyst is surrounded by a fundamental hexagonal domain of the superlat-
tice (see Fig. 6b). Within those domains, the equilibrium is approached
because of diffusion. Accordingly, the flux is zero at the boundaries between
these hexagonal domains. In the original work of von Smoluchowski, the
problem considered was three-dimensional, in which case these boundaries
can be removed to infinity because the three-dimensional stationary solu-
tions of (60) decays as 1�r with the distance r from the catalyst so that the
second boundary condition may be taken as �r_ | r=�=0 in three dimen-
sions. However, in two dimensions, the stationary solutions grow as ln r
with r so that it is not possible to obtain the reaction rate by the same con-
siderations as in three dimensions. In two dimensions (as well as in one
dimension), the problem remains non-stationary and the boundary condi-
tion must be imposed at a large but finite distance. Moreover, the hexagonal
domain around one catalyst will here be approximated by a circle so that the
second boundary condition used here is

�r_ | r=L�2=0 (62)

where L is the distance between two catalysts. If we suppose _t

exp(&2}t), Eq. (60) becomes in two dimensions

d 2_
dr2 +

1
r

d_
dr

+q2_=0 (63)

182 Claus and Gaspard



File: 822J 705023 . By:XX . Date:14:09:00 . Time:13:11 LOP8M. V8.B. Page 01:01
Codes: 1684 Signs: 981 . Length: 44 pic 2 pts, 186 mm

where q=- 2}�D. This is a Bessel equation, the general solution of which
has the form

_(r)=AJ0(qr)+BY0(qr) (64)

in terms of the zeroth-order Bessel functions J0(z) and Y0(z).(31) Introduc-
ing (64) in (61) and (62), and taking q � 0 with L � �, we get the smallest
solution as

q&
4

L - 2 ln(2L�d )
(65)

so that the leading eigenvalue is

}=
1
2

Dq2&
4D

L2 ln(2L�d )
(66)

We remark that this leading behavior is independent of the constant : of
the boundary condition (61) and, hence, essentially independent of the
reaction probability p0 if L is large enough. Since L2=Nd 2, we find that
the reaction rate decreases as (59) for N � � with a constant C=8.
However, since we have approximated a hexagon by a circle, we may
expect that this constant is not exact. A numerical evaluation shows that
the constant appearing in Eq. (59) is C=7.6.

Fig. 6. (a) Triangular trap (hatched region). (b) Elementary cell in the case n=2; the black
dots are the reactive traps.
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Fig. 7. Dependence of the reaction rate on N: }t1�N ln N, for N equal to 75, 108, 147, 192,
243 and 300, and for different interdisk distances. The open symbols correspond to the ran-
dom-walk model while the filled symbols are the result of the direct numerical simulations of
the reactive Lorentz gas.

As can be seen in Fig. 7, the behavior }t1�N ln N is indeed observed
for the random-walk model as well as for the reactive periodic Lorentz gas.
For the reactive Lorentz gas, the reaction rate was here obtained by a
direct numerical simulation of the system.

6. CONCLUSIONS

In this paper, we have studied an isomerization kinetics induced by the
dynamical chaos of a periodic Lorentz gas. We have shown that the
approach of the color toward the thermodynamic equilibrium can be
described in terms of reactive eigenmodes corresponding to an exponential
relaxation. These reactive eigenmodes are given by the eigenstates of an
operator related to the Frobenius�Perron operator of the Birkhoff�
Poincare� map of the Lorentz gas. This operator is obtained by two successive
reductions: a spatial Fourier transform reducing the description to an
elementary cell of this periodic system and a temporal Laplace transform
reducing the continuous-time dynamics to the Birkhoff�Poincare� map from
collision to collision. The Pollicott�Ruelle resonances associated with these
eigenstates are the relaxation rates of the reactive eigenmodes. Their value
at vanishing wavenumber k=0 gives the reaction rate }.

The eigenstates of the Frobenius�Perron operator turn out to be dis-
tributions. Their cumulative functions have been shown to be given by
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generalizations of the Lebesgue singular continuous functions. The singular
character has its origin in the deterministic chaotic dynamics of the particle
carrying the color. It is surprising that this singular character remains
although we have assumed a reaction probability for the isomerization so
that the model has an a priori randomness beside the dynamical random-
ness due to the deterministic chaotic motion of the Lorentz gas. However,
this extra randomness is only assumed to occur at the surface of the phase
space of the flow without modifying the deterministic equations of motion
in the bulk of the phase space. For this reason, the model we consider here
differs from stochastic models where randomness is assumed to occur dur-
ing the motion in the bulk of the phase space.(21) For such stochastic
models, we would expect the eigenmodes to be smooth. However, as we
have shown here, the eigenmodes of exponential relaxation toward equi-
librium remain singular for a chaotic deterministic system with an a priori
randomness only assumed at the surface of the phase space. The singular
character of the eigenstates have already been observed for diffu-
sion, (14, 24, 25) as well as for reaction in a reactive multibaker model.(15) This
singular character has its origin in the dynamical instability of the chaotic
motion and appears as a corollary to the existence of the chemio-
hydrodynamic modes of exponential relaxation toward equilibrium in
unstable deterministic systems.

Our method allows us to obtain the dispersion relation of the reactive
eigenmodes and, thus, to justify the macroscopic reaction-diffusion equa-
tions on the largest spatial scales. These reaction-diffusion equations
appear with cross-diffusion terms which are small if not vanishing in the
Lorentz gas. This result confirms the phenomenological treatments in
which cross-diffusion is neglected.(32)

Moreover, we have analyzed the dependence of } on the distance d
between the disks as well as on the distance L=d - N between the
catalysts. This analysis reveals that, for small enough densities of catalysts,
the reaction is controlled by the diffusion. With a simple random-walk
model, we have obtained values of the reaction rate in good agreement
with the Pollicott�Ruelle resonances of the Frobenius�Perron operator.
Applying this model to different values of the density of catalysts, we have
observed that the reaction rate behaves like

}&7.6
D

d 2N ln N
(67)

where N is the number of inert disks for one catalytic disk. The behavior
(67) is predicted in two dimensions by Smoluchowski's theory and con-
firms that the reaction is controlled by the diffusion coefficient D.
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